Comparing machine learning and interpolation methods for loop-level calculations

نویسندگان

چکیده

The need to approximate functions is ubiquitous in science, either due empirical constraints or high computational cost of accessing the function. In high-energy physics, precise computation scattering cross-section a process requires evaluation computationally intensive integrals. A wide variety methods machine learning have been used tackle this problem, but often motivation using one method over another lacking. Comparing these typically highly dependent on problem at hand, so we specify case where can evaluate function large number times, after which quick and accurate take place. We consider four interpolation three techniques compare their performance toy functions, four-point scalar Passarino-Veltman D_0 D0 function, two-loop self-energy master integral M. find that low dimensions (d = 3), traditional like Radial Basis Function perform very well, higher (d=5, 6, 9) multi-layer perceptrons (a.k.a neural networks) do not suffer as much from curse dimensionality provide fastest most predictions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine Learning Methods for High Level Cyber Situation Awareness

The work described here grew out of the TaskTracer system, which is a Microsoft Windows add-in that extends the Windows desktop user interface to become a “project-oriented” user interface. The basic hypothesis is that the user’s time at the desktop can be viewed as multi-tasking among a set of active projects. TaskTracer attempts to associate project “tags” with each file, folder, web page, em...

متن کامل

Comparing Learning Methods for Classification

We address the consistency property of cross validation (CV) for classification. Sufficient conditions are obtained on the data splitting ratio to ensure that the better classifier between two candidates will be favored by CV with probability approaching 1. Interestingly, it turns out that for comparing two general learning methods, the ratio of the training sample size and the evaluation size ...

متن کامل

specialized methods to teach spelling: comparing three methods

چکیده: بررسی ادبیات مربوطه در کشور در زمینه یادگیری زبان انگلیسی نشان می‎دهد که علی‎رغم اهمیت املا در فرآیند یادگیری به طور عام و یادگیری زبان انگلیسی به طور خاص، این مولفه از جایگاهی متناسب با اهمیت آن برخوردار نیست و عمدتاً نادیده گرفته شده است. تحقیقات گسترده‎ای در خارج از کشور در مورد ماهیت این مولفه صورت گرفته است، در حالی که به جرأت می‎توان گفت در داخل کشور گامی در مورد درک ماهیت آن و فرآی...

15 صفحه اول

Quantum Loop Topography for Machine Learning.

Despite rapidly growing interest in harnessing machine learning in the study of quantum many-body systems, training neural networks to identify quantum phases is a nontrivial challenge. The key challenge is in efficiently extracting essential information from the many-body Hamiltonian or wave function and turning the information into an image that can be fed into a neural network. When targetin...

متن کامل

Comparing Prosody Formalisms for Machine Learning

We need to find the most suitable prosody formalism for the task of machine learning. The target application is a prosody generative module for text-to-speech synthesis. This module will learn prosody marks (parameters or symbols) from large corpora. Formalism we are looking for should be general, perceptually relevant, restorable, automatically obtained, objective and learnable. Main formalism...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SciPost physics

سال: 2022

ISSN: ['2542-4653']

DOI: https://doi.org/10.21468/scipostphys.12.6.187